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Highlights 

 We explored how neural network models capture monolingual children’s 

comprehension 

 The LSTM and GPT-2 models were fine-tuned via patching and hyperparameter 

adjustments 

 We assessed how the models classify Korean suffixal passive sentences used in Shin 

(2022a) 

 The models did not faithfully replicate the children’s response patterns in Shin 

(2022a) 

 Our findings highlight the models’ limitations in revealing child language features 
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Modelling child comprehension: A case of suffixal passive construction in Korean 

 

 

Abstract 

The present study investigates a computational model’s ability to capture monolingual 

children’s language behaviour during comprehension in Korean, an understudied language in 

the field. Specifically, we test whether and how two neural network architectures (LSTM, 

GPT-2) cope with a suffixal passive construction involving verbal morphology and required 

interpretive procedures (i.e., revising the mapping between thematic roles and case markers) 

driven by that morphology. To this end, we fine-tune our models via patching (i.e., pre-

trained model + caregiver input) and hyperparameter adjustments, and measure their binary 

classification performance on the test sentences used in a behavioural study manifesting 

scrambling and omission of sentential components to varying degrees. We find that, while 

these models’ performance converges with the children’s response patterns found in the 

behavioural study to some extent, the models do not faithfully simulate the children’s 

comprehension behaviour pertaining to the suffixal passive, yielding by-model, by-condition, 

and by-hyperparameter asymmetries. This points to the limits of the neural networks’ 

capacity to address child language features. The implications of this study invite subsequent 

inquiries on the extent to which computational models reveal developmental trajectories of 

child language that have been unveiled through corpus-based or experimental research. 
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1. Introduction 

One notable trend in language sciences is to apply computational methods and techniques to 

pursue linguistic inquiries. This line of research has explored computational models’ capacity 

to simulate human language behaviour (Chang, 2009; Hawkins et al., 2020; Jones & Bergen, 

2024; Marvin & Linzen, 2019; Warstadt et al., 2019; Wilcox et al., 2018), together with 

performance-wise variations across algorithms (Hu et al., 2020; Shin & Mun, 2023a), thereby 

gaining momentum in addressing how learning occurs in the human mind without presuming 

innate knowledge about grammar (Contreras Kallens et al., 2023; Perfors et al., 2011; Shin, 

2021; Shin & Mun, 2023b; Warstadt & Bowman, 2020; but see Perkins et al., 2022). Despite 

its significance, the current research practice in this field bears three grave limitations. First, 

the field is skewed heavily towards a limited range of languages (and especially English) and 

usage features (e.g., adult language). In particular, based on the predominance of English-

oriented Large Language Models (LLMs), the intensification of this research bias is being 

accelerated. This restricts the generalisability of findings from previous studies to lesser-

studied languages and registers. Second, while the vast majority of work on this topic seeks 

to propose new models or improve currently available models, researchers pay relatively little 

attention to whether and how the implications of computational simulations are compatible 

with those of other types of measurement, such as behavioural experiments and corpus 

findings revealing fundamental architectures of human language behaviour. We are aware of 

few studies informative in this regard (Ambridge et al., 2020; Oh et al., 2022; Shin & Mun, 

2023a, 2023b; Xu et al., 2023). This gap prevents explainable AI, that is, an evaluation of the 

degree to which the performance of computational models addresses the emergence, growth, 

and change in linguistic knowledge in a sensible, interpretable way. Third, researchers’ access 

to computing resources in academia is limited. Researchers in academia often confront costly 

access to cutting-edge algorithms and pre-trained models, as well as weak computing power. 
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These circumstances stifle AI literacy, namely, researchers’ ability to understand how 

computational algorithms work and utilise them to pursue linguistic inquiries. Together, these 

limitations pose a serious threat to diversity, equity, and inclusion in research (Benders et al., 

2021; Blasi et al., 2022; Chang & Bergen, 2024). 

The present study aims to alleviate these concerns by investigating how 

computational models capture children’s language behaviour during comprehension, a 

process in which language users identify an intended meaning or function from a given 

linguistic form (Goldberg, 2019). In this study, we attend to children as the target population. 

Despite being extensively investigated in the language acquisition literature due to their 

notable systematicity and variability of linguistic development interfacing with domain-

general learning capacities, this population has remained understudied in computational 

approaches to language science. With technological advancements, computational methods 

hold the potential to complement and advance traditional research paradigms by uncovering 

patterns and mechanisms of child language development, as a type of general knowledge 

formation process. We specifically focus on neural networks as an artefact of biological 

neurons in the human brain. To this end, we employ a suffixal passive construction in 

Korean, which is an understudied language for this topic and is computationally challenging 

due to its language-specific properties. Cross-linguistically, a passive construction is one 

major clausal type that expresses a transitive event (‘who does what to whom’) and poses a 

challenge to its acquisition for children due to various factors involving the passive voice, 

such as its paucity of input, the structural complexity that it manifests, and its competition 

with active-voice knowledge, which is frequent in use and deeply entrenched in the mind 

(Abbot-Smith et al., 2017; Borer & Wexler, 1987; Brooks & Tomasello, 1999; Huang et al., 

2013; Messenger & Fisher, 2018; Shin, 2022a; Shin & Deen, 2023; see also Deen, 2011).  
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1.1 Computational modelling of children’s linguistic knowledge 

An emerging line of research applies computational methods to reveal developmental 

trajectories of linguistic knowledge measured through children’s comprehension or 

production (Alishahi & Stevenson, 2008; Ambridge et al., 2020; Bannard et al., 2009; 

Martinez et al., 2023; Sagae, 2021; Yedetore et al., 2023; You et al., 2021). Alishahi and 

Stevenson (2008) conducted Bayesian simulations on acquiring English verb-argument 

constructions. They created artificial input as pairs of a sentential frame and the 

corresponding semantic description of that frame based on caregiver input. These form–

meaning pairs were used to train a Bayesian learner that displayed probability distributions 

involving constructional clusters as learning proceeded. The results showed that, as the 

quantity of input increased over time, the learner was able to assign higher probabilities to 

frequently occurring verbs within specific constructions to which they were mapped and 

generalise this schematic knowledge to a newly attested lexicon. You et al. (2021) 

investigated whether meaning can be acquired with reference to contextual information 

(generated by word co-occurrences) and without reference to syntactic structures. They 

trained Word2Vec models with two different types of speech in English (child-directed 

speech vs. adult-directed speech) and conducted a discrimination task with causality as a test 

case. The results showed that the models were able to infer causal meaning from simple co-

occurrences of neighbouring words in child-directed speech, indicating that word sequences 

can allow semantic inference without resort to explicit structural information. Sagae (2021) 

examined the extent to which neural network models track the change in English-speaking 

children’s language throughout learning, which is measured via language assessment metrics. 

The study trained an LSTM model with longitudinal language data for 16 children 

(specifically using morphosyntactic tags in the data) and evaluated the model’s classification 

accuracy, measured by age in months. The results showed that the model generally performed 
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on par with the baseline metrics (mean length of utterance, developmental sentence score, 

index of productive syntax), indicating that the model could capture linguistic structures 

relevant to the assessment of language development. 

 The case for non-English, underrepresented languages and language-usage contexts is 

extremely thin. For example, Ambridge et al. (2020) tested how children acquire the ability of 

productive generalisation which also conforms to usage conventions of their native language. 

They compared acceptability judgements of sentences describing causation events for five 

typologically distinctive languages (English; Japanese; Hindi; Hebrew; K'iche') and 

conducted a series of simulations using a discriminative learning mechanism. The model 

developed for each language was trained on general-purpose corpora in that language and 

was not provided with acceptability-rating data. Results showed that the model, whose 

performance was measured by correlating these ratings with human judgments, exhibited a 

good level of fit to children’s and adults’ judgement data, except for the case of K'iche'. The 

findings of Shin and Mun (2023a) are particularly pertinent to the present study. They 

expanded upon Shin (2021), which measured comprehension behaviour in Korean 

monolingual children, focusing on the Agent-First strategy. Adopting a series of picture-

selection tasks involving active transitive sentences with varying degrees of scrambling and 

omission of sentential components, the children were asked to choose one of two pictures 

corresponding to an auditory stimulus describing the target picture. Shin and Mun (2023a) 

investigated the ability of neural networks to simulate the children’s picture-selection 

performance observed in Shin (2021), by assessing the binary classification (Agent-First; 

Theme-First) performance of four models (Word2Vec, LSTM, BERT, GPT-2) using the test 

stimuli from the original study. The results revealed that, while there were some similarities 

between these models’ classification performance and the children’s response patterns, the 
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models’ performance did not fully align with the children’s utilisation of this strategy. This 

discrepancy highlights asymmetries both across models and across experimental conditions. 

 

1.2 Acquisition of suffixal passive in Korean 

Korean is an agglutinative, Subject–Object–Verb language with overt case-marking via 

dedicated particles and active use of verbal morphology to indicate grammatical information. 

Two major clausal constructions deliver transitivity in Korean: active transitive and passive. 

The canonical active transitive pattern in Korean, when fully marked as in (1a), occurs with a 

nominative-marked agent, followed by an accusative-marked theme; a verb carries no 

dedicated active morphology. Korean allows scrambling of sentential components as in (1b) 

if that reordering (agent–theme  theme–agent in this case) preserves the basic propositional 

meaning. In addition, omission of sentential components is permitted as in (1c-d) if event 

participants are clearly identified with no ambiguity arising within the context (Sohn, 1999). 

 

(1) Active transitive 

a. Canonical 

Mina-ka  Pola-lul  an-ass-ta. 

Mina-NOM  Pola-ACC hug-PST-SE
1
 

‘Mina hugged Pola.’ 

b. Scrambled 

Pola-lul  Mina-ka  an-ass-ta. 

Pola-ACC  Mina-NOM  hug-PST-SE 

‘Mina hugged Pola.’ 
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c. Omission (case marker) 

Mina-ka  Pola-lul  an-ass-ta. 

Mina-NOM  Pola-ACC  hug-PST-SE 

‘Mina hugged Pola.’ 

d. Omission (argument & case marker) 

Mina-ka  Pola-lul  an-ass-ta. 

Mina-NOM  Pola-ACC  hug-PST-SE 

‘(Mina) hugged Pola.’ 

 

Pertaining to the passive construction, the passive voice is marked across languages 

(Haspelmath, 1990; Siewierska, 2013), and its usage frequency in Korean is notably low (in 

comparison to the use of the active voice; Park, 2021; Shin & Mun, 2023b; Woo, 1997). Of 

the three types of passive construction (Sohn, 1999), the suffixal passive (which is the most 

frequent type that children encounter; Shin, 2022a) consists of two arguments, a nominative-

marked theme and a dative-marked agent occupying the subject and oblique positions, 

respectively; a verb carries dedicated passive morphology. While the canonical pattern 

follows the theme–agent ordering as in (2a), it can be scrambled, yielding the agent–theme 

ordering as in (2b) with the propositional meaning intact. 

 

(2) Suffixal passive 

a. Canonical 

Pola-ka  Mina-hanthey  an-ki-ess-ta. 

Pola-NOM  Mina-DAT  hug-PSV-PST-SE 

‘Pola was hugged by Mina.’ 
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b. Scrambled 

Mina-hanthey  Pola-ka  an-ki-ess-ta. 

Mina-DAT  Pola-NOM  hug-PSV-PST-SE 

‘Pola was hugged by Mina.’ 

 

Passive morphology, which is one of the four allomorphic variants of suffixes -i-, -hi-, 

-li-, or -ki- (Sohn, 1999), serves as a key disambiguation point to identify the structural 

properties of the suffixal passive sentence, forcing a comprehender to revise the initial 

analysis prior to that morphology. In Korean, a nominative-marked [+human] argument is 

likely to be interpreted as an agent, and a dative-marked [+human] argument is likely to be 

interpreted as a recipient; these interpretations are supported by strong mapping between 

thematic roles and case markers attested in language use (Kim & Choi, 2004; Shin & Mun, 

2023b; Sohn, 1999). Therefore, a plausible way of analysing (2) prior to the verb is that Pola 

acts on/for Mina. However, this initial analysis is incongruent with the passive-voice 

information conveyed by verbal morphology. Thus, upon encountering the verb at the 

sentence-final position, a comprehender must revise the initial interpretation by recalibrating 

the arguments’ thematic roles as required by passive morphology, mapping a theme role onto 

the nominative-marked entity and an agent role onto the dative-marked entity. This revision 

process driven by passive morphology as a late-arriving cue is linguistically and cognitively 

demanding (Rapp & Kendeou, 2007; Trueswell et al., 1999), thereby adding difficulty in 

children’s comprehension of this construction (Kim et al., 2017; Shin, 2022a; Shin & Deen, 

2023). 

Shin (2022a), the baseline of the present study, investigated Korean monolingual 

children’s comprehension behaviour involving the suffixal passive construction through four 

picture-selection experiments combined with a novel methodology that systematically 

                  



 11 

omitted or obscured portions of test sentences using acoustic sounds (e.g., cough, chewing). 

In each experiment, a pair of two pictures was presented involving the same action but 

reversed thematic roles (e.g., a dog kicking a cat; a cat kicking a dog), and a sentence 

indicating one of the two pictures (e.g., kangaci-ka koyangi-hanthey cha-i-eyo. dog-NOM 

cat-DAT kick-PSV-SE ‘The dog is kicked by the cat.’) was presented twice orally; 

participants (three-and-four-year-olds; five-and-six-year-olds; adults) were asked to choose a 

picture that matched the sentence. The four experiments yielded three key findings 

concerning children’s comprehension of the suffixal passive construction (Table 1). First, 

given the competition between passive-voice knowledge (induced by verbal morphology) and 

active-voice knowledge (which is frequent in use and well-entrenched in children’s minds), 

utilising passive-voice knowledge during comprehension was influenced by age (serving as a 

proxy for language-usage experience). Second, children aged five to six demonstrated the 

ability to apply passive-voice knowledge, with the degree of its use inversely proportional to 

the computational complexity of the sentence (e.g., number of arguments, type of case 

markers present/absent). Third, children aged three and four did not consistently interpret 

passive sentences in an active-like manner. These findings indicate an emerging sensitivity to 

passive morphology and a growing capacity to employ passive-voice knowledge tied to that 

morphology with age, in conjunction with the interplay between voice-related knowledge 

involving a given stimulus. This suggests early emergence but late mastery of linguistic 

knowledge, the maturation of which necessitates substantial language-usage experience. 

 

 

 

 

 

                  



 12 

Table 1. Summary of experimental results: Shin (2022a) 

Experiment Condition Three-and-four-

year-olds 

Five-and-six-year-

olds 

Adult 

Mean SD Mean SD Mean SD 

1 NNOMNACCVact 0.844 0.36 0.942 0.24 1.000 0.00 

NACCNNOMVact 0.778 0.42 0.710 0.46 1.000 0.00 

NNOMNDATVpsv 0.456 0.50 0.478 0.50 1.000 0.00 

NDATNNOMVpsv 0.511 0.50 0.768 0.43 1.000 0.00 

2 NCASENCASEVact 0.667 0.48 0.773 0.42 0.900 0.30 

NCASENCASEVpsv 0.545 0.50 0.424 0.50 0.150 0.36 

3 NNOMVact 0.944 0.23 0.971 0.17 0.933 0.25 

NACCVact 0.922 0.27 0.971 0.17 1.000 0.00 

NNOMVpsv 0.522 0.50 0.710 0.46 0.967 0.18 

NDATVpsv 0.533 0.50 0.841 0.37 0.950 0.22 

4 NCASEVact 0.426 0.50 0.604 0.50 0.667 0.48 

NCASEVpsv 0.593 0.50 0.333 0.48 0.100 0.30 

Note. The scoring for the conditions in Experiments 2 and 4, which can in principle be 

interpreted in more than one way, was based on the high likelihood of agent-first 

interpretation (0: theme-first; 1: agent-first). The mean scores in these conditions indicate the 

mean rates of agent-first response. 

 

1.3 The present study 

In addition to the acquisitional challenges involving the passive voice as shown across 

languages, this construction poses an additional challenge to Korean monolingual children 

because passive morphology in a verb invokes a mandatory revision of initial interpretation 

on the associations between thematic roles and case markers from typical/frequent 

(nominative-marked agent; dative-marked recipient) to atypical/infrequent (nominative-

marked theme; dative-marked agent) ones. In this respect, great interest lies in whether 

computational models can recognise passive morphology and properly conduct the required 
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revision process to arrive at the correct interpretation of a suffixal passive sentence. We 

investigate this issue by developing neural network models with (i) fine-tuning via patching 

(i.e., pre-trained model + caregiver input) and (ii) hyperparameter variations and by 

examining their classification performance on the same test stimuli as that used in Shin 

(2022a). Caregiver input is noteworthy because of its simple, brief, and repetitive nature, 

which qualitatively differs from adult-directed speech and plays a substantial role in the way 

that children develop linguistic knowledge (Behren, 2006; Cameron-Faulkner et al., 2003; 

Snow, 1972; Stoll et al., 2009). Therefore, it is reasonable to assume that a computationally 

simulated learner trained on caregiver input would elucidate child language features (Alishahi 

& Stevenson, 2008; You et al., 2021; but see Yedetore et al., 2023). Reflecting the core 

assumption of usage-based constructionist approaches—what-you-see-is-what-you-get 

(Goldberg, 2019; Lieven, 2010; Tomasello, 2003), the models engage only in formal features 

(i.e., raw text) in the course of training and classification, which differs from other studies 

implementing additional devices in their simulations, such as thematic role variables (Chang, 

2002) and a separate layer encoding semantic information (Alishahi & Stevenson, 2008). 

This study also builds on Shin and Mun (2023a), complementing how hyperparameter 

variations modulate model performance with respect to child language data. As we are not 

aware of any study touching upon this inquiry, our study is pioneering and innovative, and 

simultaneously, somewhat explorative. 

 In this study, we adopt two neural network architectures: LSTM (Long Short-Term 

Memory; Hochreiter & Schmidhuber, 1997) and GPT-2 (Generative Pre-trained Transformer 

2; Radford et al., 2019). LSTM is a recurrent neural network algorithm with the addition of 

three gates (Forget, determining whether the incoming information from the previous 

timestamp is irrelevant and thus forgotten; Input, quantifying the significance of new 

information carried by the incoming input; Output, submitting the currently updated 
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information to the next timestamp) comprising a memory cell in a hidden layer. In addition to 

the possibility that recurrent neural networks learn some aspects of syntactic structures when 

provided with appropriate training (Kiperwasser & Goldberg, 2016; Futrell & Levy, 2019; 

Linzen & Baroni, 2021), this algorithm has a better control for the extent to which 

information in a hidden state is updated after each word. GPT utilises an attention mechanism 

for effective computation by enhancing each part of the input sequence in consideration of 

various information about the whole sequence (e.g., segment position) to better identify the 

most relevant parts of that sequence (Vaswani et al., 2017). Because this algorithm targets a 

general-purpose learner whose learning trajectories are not subject to particular tasks, model 

training does not stand on the specifics of data or tasks (Radford et al., 2019); it can also 

perform new tasks with a relatively small number of examples. Despite the continuous 

development of the GPT-n series, GPT-2 is often employed to conduct simulations on 

language behaviour (Goldstein et al., 2022; Hosseini et al., 2022), yielding successful 

modelling on various language tasks. 

 

2. Methods 

Figure 1 presents the entire workflow of computational simulations in this study. All the 

modelling work was conducted using a MacBook Pro (Apple M2 Max with 38‑core GPU, 

16‑core Neural Engine, 96GB unified memory). 

 

 

Figure 1. Overview of computational modelling 
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2.1 Data pre-processing 

Table 2 summarises the information about the caregiver-input data in CHILDES 

(MacWhinney, 2000) used in our study. We utilised the same data as that used by Shin and 

Mun (2023a) for the current study in consideration of the comparability of findings between 

the two studies. The data were pre-processed by (i) correcting typos and spacing errors and 

(ii) excluding any sentence whose length was less than five characters or those consisting 

only of onomatopoeic and mimetic words (see Shin, 2022b for the details about the pre-

processing), which resulted in 69,498 sentences (285,350 eojeols
3
).  

 

Table 2. Information about caregiver input data in CHILDES 

Name of  

corpus 
Caregiver 

Child /  

age range 

Time of 

collection (year) 

Quantity 

(sentence #) 

Jiwon M & F Jiwon / 2;0–2;3 1992 10,602 

Ryu 

GM, GF, & M Jong / 1;3–3;5 2009–2011 28,657 

GM, M, & F Joo / 1;9–3;10 2010–2011 27,071 

M Yun / 2;3–3;9 2009–2010 15,263 

Note. F = father; GM = grandmother; GF: grandfather; M = mother. 

 

2.2 Model training
4
 

2.2.1 Architecture-general procedure 

Table 3 provides details on each model created in this study. Neural networks typically 

require extensive training data for training to ensure their optimal operation (Edwards, 2015), 

but there is no pre-trained model exclusively constructed with caregiver input, nor a sufficient 

amount of Korean caregiver-input data to create a pre-trained model. In addition, children 

encounter more than just caregiver input in real-life scenarios; there are many types of 

exposure to language use with which children are surrounded. To cope with these issues, we 

employed the respective pre-trained models, which were open-access and representative at 
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the moment of study, and patched the caregiver-input data to each pre-trained model when 

developing our models.
5
 The patching procedure, inspired by prior work (Ilharco et al., 2022; 

Moon & Okazaki, 2020; Ninalga, 2023), involved enlarging a pre-trained model by 

incorporating syllables from the caregiver input which were not present in the model to that 

model. This procedure increased the vocabulary size of the GPT-2 pre-trained model (51,200 

to 67,052). We believe that incorporating caregiver input into pre-trained models can enhance 

ecological validity for this type of modelling, but no research has scrutinised this point 

thoroughly, indicating the need for further attention. 

 

Table 3. Specification of computational models 

 LSTM GPT-2 

Python Package PyTorch (Paszke et al., 2019; 

version 2.1.0) 

Transformers (Wolf et al., 2020; 

version 4.35) 

Pre-trained model KoCharElectra-Base
(a)

 

(Size: 11,360) 

KoGPT2-base-v2
(b)

 

(Size: 51,200) 

Tokenisation Syllable-based Syllable-based; Byte Pair Encoding 

Hyperparameter 

variation 

Learning rate: 0.001, 0.0001 

Batch size: 16, 32, 64 

Dropout rate: 0.3, 0.5, 0.7 

Learning rate: 0.001, 0.0001 

Batch size: 16, 32, 64 

Max. sequence length: 64, 128, 256 

Epoch 10 10 

Model-specific Hidden layers: 256 

Embedded dimension: 128 

Hidden dimension: 8 

Number of layers: 1 

Seed: 42 

Epsilon: 0.00000001 

Embedding & hidden dimension: 768 

FFN inner hidden dimension: 3,072 

Number of attention heads: 12 

Number of parameters: 125M 

Number of transformer layers: 12 

Note. (a) https://github.com/monologg/KoCharELECTRA (accessed on 2023-11-07). (b) 

https://github.com/SKT-AI/KoGPT2 (accessed on 2023-11-07). 
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To conduct the binary classification of test items (Agent-First; Theme-First), our 

models were further fine-tuned on instances of all the constructional patterns expressing a 

transitive event—active transitive and suffixal passive, with scrambling and varying degrees 

of omission manifested—with labels indicating whether the thematic-role ordering of these 

instances followed agent-first or theme-first (see Appendix for the information about the 

instances). The instances were extracted from the caregiver-input data in CHILDES through 

an automatic search process developed by Shin (2022b); every sentence for each extraction 

was checked manually to confirm its accuracy. This treatment also aimed to enhance 

compatibility between the simulation environments and the experimental settings of Shin 

(2022a), in which participants were shown transitive-event pictures before receiving a 

stimulus to contextualise their interpretation. The procedure involved exposing the models to 

two labels indicating the thematic-role orderings of transitive-event sentences, along with the 

sentences themselves, to prepare the models for the designated classification task. This 

approach is conceptually analogous to the procedure employed with children in Shin (2022a). 

Furthermore, considering the zero occurrence of some patterns in the input, we adapted the 

Laplace smoothing technique (Agresti & Coull, 1998) by adding one fake instance (following 

the pattern-wise characteristics) to all the patterns. 

To investigate the influence of hyperparameter variations on model performance when 

handling child language data, we adjusted three hyperparameters for each architecture: 

learning rate, batch size, and dropout rate for LSTM; learning rate, batch size, and maximum 

sequence length for GPT-2. Our choices were informed by previous studies (architecture-

general: Li et al., 2020; Sun et al., 2019; Takase et al., 2018; Wu et al., 2019; LSTM: 

Kågebäck & Salomonsson, 2016; Ma et al., 2020; Qian et al., 2017; Yang et al., 2019; GPT-2: 

Budzianowski & Vulić, 2019; Dai et al., 2023; Oh & Schuler, 2022; de Vries & Nissim, 

2021). These variations resulted in 18 sub-models per architecture. 
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2.2.2 Architecture-specific procedure 

2.2.2.1 LSTM 

No syllable-based Korean pre-trained model for this architecture exists, so we extracted 

relevant vocabulary information from a pre-trained model for ELECTRA and trained the 

model. For each epoch, all the syllable information was submitted to the model’s input layer. 

Take an eojeol twayci-ka ‘pig-NOM’ as an example (Figure 2). For the syllable ci, the model 

first evaluates if the information about the previous syllable tway obtained from the prior cell 

is relevant to the current input at the Forget gate (σ1). The model then quantifies the 

information about the current input via the tangent function at the Input gate (σ2). Finally, the 

model hands over this outcome to the processing of the next syllable ka at the Output gate 

(σ3), again via the tangent function. Once a sentence is completed for processing, the 

optimiser computes the distance/loss between the observed value and the predicted value, the 

result of which is transmitted through backpropagation.  

 

 

Figure 2. Model training: LSTM (e.g., twayci-ka ‘pig-NOM’) 

 

After the training, the model evaluated the test stimuli, accumulating by-syllable information 

sequentially (by generating respective hidden layers) and then comparing the outcomes (1 = 

Agent-First; 0 = Theme-First) to the actual labels of these stimuli. We repeated the same 

                  



 19 

learning process 30 times in each epoch and averaged the by-condition outcomes in assessing 

the models’ classification performance to alleviate potential variations during the task. 

 

2.2.2.2 GPT-2 

As illustrated in Figure 3, each input sentence in the fine-tuning stage was transformed into 

two embedding types. For token embedding, the sentences were tokenised as syllable units. 

Originally, GPT-2 utilised a character for this task in the case of English. However, KoGPT-2 

employs a syllable as a basic unit of tokenisation, likely in consideration of the language-

specific properties of Korean. For position embedding, each token was converted into a 

numeric value indicating a unique index of the token with reference to the vocabulary in the 

patched pre-trained model. The maximum dimension size of position embeddings was 

determined by the maximum sequence length set in the hyperparameter-setting stage. The 

initial values of epsilon (i.e., the upper bound of randomness for a model to explore the data) 

and seed (i.e., the initialisation state of a pseudo-random number generator indicating where a 

model starts) were automatically updated with the outcomes of each epoch. The training 

occurred from the initial model with the zero value of gradients to an optimal model with 

updated values through feedforward and backpropagation. Finally, the trained model per 

epoch classified the test stimuli; likewise for the LSTM model, we averaged the by-condition 

classification outcomes from 30 times of learning. 
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Figure 3. Model training: GPT-2 (e.g., napi-ka kkwulpel-ul an-ayo butterfly-NOM honeybee-

ACC hug-SE ‘The butterfly hugs the honeybee.’) 

 

2.3 Model evaluation 

For test items, we employed the same stimuli used in Shin (2022a). Each condition consisted 

of six instances, with animals as agents and themes and actional verbs at the end, as 

illustrated in Table 4. Each trained model classified every test stimulus, evaluating whether 

the stimulus fell into Agent-First or Theme-First. While the stimuli in the case-less conditions 

(NCASENCASEVact, NCASENCASEVpsv, NCASEVact, NCASEVpsv) in Shin (2022a) involved acoustic 

masking effects, the same stimuli in the simulations did not have such auditory effects. This 

was unavoidable considering this study’s simulation setting, in which the models worked 

exclusively with the textual data. We concede that this difference may serve as one 

confounding factor for interpreting the results. In this regard, using a [MASK] token, 

although still textual, may pave the way for further research based on this study’s findings. 
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Table 4. Composition of test stimuli 

Condition Example Expected classification 

NNOMNACCVact cat-NOM dog-ACC kick Agent-first 

NACCNNOMVact dog-ACC cat-NOM kick Theme-first 

NNOMNDATVpsv cat-NOM dog-DAT kick-PSV Theme-first 

NDATNNOMVpsv dog-DAT cat-NOM kick-PSV Agent-first 

NCASENCASEVact
(a)

 cat dog kick Agent-first 

NCASENCASEVpsv
(a)

 cat dog kick-PSV Theme-first 

NNOMVact cat-NOM kick Agent-first 

NACCVact dog-ACC kick Theme-first 

NNOMVpsv cat-NOM kick-PSV Theme-first 

NDATVpsv dog-DAT kick-PSV Agent-first 

NCASEVact
(a)

 dog kick Agent-first 

NCASEVpsv
(a)

 dog kick-PSV Theme-first 

Note. As (a) can in principle be interpreted in more than one way, the expected classification 

was determined on the basis of the canonical thematic-role ordering in each construction type 

(active transitive: Agent-first [agent–theme]; suffixal passive: Theme-first [theme–agent]). 

 

Our aim was to compare the picture-selection performance of children as observed in Shin 

(2022a) directly and meaningfully with the classification performance of the models in our 

study. To achieve this, we utilised the models’ classification accuracy (or their Agent-First 

classification rate for the case-less conditions) as analogous to the children’s response 

patterns in each condition. We note that 50%, or a value of 0.5, represents the chance level 

when interpreting the results. 
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3. Results 

3.1 Case-marked conditions 

3.1.1 Two-argument active transitive: NNOMNACCVact & NACCNNOMVact 

The children in Shin (2022a) were good at both conditions in general, and they were better in 

the canonical condition than the scrambled condition (three-and-four-year-olds: 84% in 

NNOMNACCVact & 78% in NACCNNOMVact; five-and-six-year-olds: 94% in NNOMNACCVact & 

71% in NACCNNOMVact). These findings align with those of previous research showing 

children’s degraded accuracy rates for the scrambled word order relative to the canonical 

word order (e.g., Jin et al., 2015; Kim et al., 2017; Schipke et al., 2012). 

Figures 4 and 5 present the classification accuracy of the models per epoch in each 

condition. In NNOMNACCVact, all the models demonstrated high accuracy, independently of 

architecture or hyperparameter types, as the epoch progressed. In contrast, the two 

architectures showed distinctive performance in NACCNNOMVact: while the LSTM models 

achieved very high accuracy, the GPT-2 models’ accuracy rates were close to 0, regardless of 

architecture or hyperparameter type. This outcome indicates that the GPT-2 models classified 

the test stimuli in this condition into Agent-First most of the time (which should have been 

Theme-First). These findings resemble those of Shin and Mun (2023a), showing the two 

models’ contrastive performance in this condition. 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 4. Model performance: NNOMNACCVact. X-axis = epoch; Y-axis = accuracy (mean). 

Error bars = 95% CIs. 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 5. Model performance: NACCNNOMVact. X-axis = epoch; Y-axis = accuracy (mean). 

Error bars = 95% CIs. 
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3.1.2 Two-argument suffixal passive: NNOMNDATVpsv & NDATNNOMVpsv 

The children in Shin (2022a) demonstrated notable by-age-group and by-condition 

asymmetries when coping with the two passive-voice conditions. While the three-and-four-

year-olds showed at-chance performance in both conditions (46% in NNOMNDATVpsv; 48% in 

NDATNNOMVpsv), the five-and-six-year-olds showed at-chance performance (51% in 

NNOMNDATVpsv) in the canonical condition and above-chance performance (77% in 

NDATNNOMVpsv) performance in the scrambled condition. These findings indicate that, given 

the acquisitional challenges involving the passive voice, the children may have noticed 

passive morphology and utilised passive-voice knowledge tied to that morphology—albeit 

weak and inconsistent—to some extent, especially in the scrambled condition for the five-

and-six-year-olds, against the co-activation of and strong interference from active-voice 

knowledge. 

Figures 6 and 7 present the classification accuracy of the models per epoch in each 

condition. In NNOMNDATVpsv, the two architectures showed distinctive performance: while all 

the LSTM models achieved very high accuracy, all the GPT-2 models’ accuracy rates were 

close to 0, regardless of architecture or hyperparameter type. This finding indicates that the 

GPT-2 models predominantly classified the test stimuli in this condition as Agent-First 

(which should have been Theme-First, the correct interpretation of this condition). However, 

in NDATNNOMVpsv, all the models demonstrated high accuracy, independently of architecture 

or hyperparameter types, as the epoch progressed. 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 6. Model performance: NNOMNDATVpsv. X-axis = epoch; Y-axis = accuracy (mean). 

Error bars = 95% CIs.  
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 7. Model performance: NDATNNOMVpsv. X-axis = epoch; Y-axis = accuracy (mean). 

Error bars = 95% CIs. 
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3.1.3 One-argument active transitive: NNOMVact & NACCVact 

The children in Shin (2022a) were very good at the two conditions (three-and-four-year-olds: 

94% in NNOMVact & 92% in NACCVact; five-and-six-year-olds: 97% in both conditions). This 

finding indicates that they had a good command of the case-marking knowledge required for 

the active transitive, which is consistent with previous reports (Jin et al., 2015; Özge et al., 

2019). 

Figures 8 and 9 present the classification accuracy of the models per epoch in each 

condition. In NNOMVact, all the models demonstrated high accuracy, independently of 

architecture or hyperparameter types, as the epoch progressed. In NACCVact, except for the 

LSTM models with a learning rate of 0.001, all the models demonstrated high accuracy, 

regardless of architecture or hyperparameter types, as the epoch progressed. The 

extraordinary performance of the LSTM models with a learning rate of 0.001 is inconsistent 

with Shin and Mun’s findings (2023a). 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 8. Model performance: NNOMVact. X-axis = epoch; Y-axis = accuracy (mean). Error 

bars = 95% CIs. 

  

Batch: 16 Batch: 32 Batch: 64

D
ro

p
O

u
t: 0

.3
D

ro
p

O
u

t: 0
.5

D
ro

p
O

u
t: 0

.7

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Epoch

m
e

a
n

Pattern_9_LR_0.001

Batch: 16 Batch: 32 Batch: 64

D
ro

p
O

u
t: 0

.3
D

ro
p

O
u

t: 0
.5

D
ro

p
O

u
t: 0

.7

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Epoch

m
e

a
n

Pattern_9_LR_0.0001

Batch: 16 Batch: 32 Batch: 64

M
a

x
L

e
n

g
th

: 6
4

M
a

x
L

e
n

g
th

: 1
2

8
M

a
x
L

e
n

g
th

: 2
5

6

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Epoch

m
e

a
n

Pattern_9_LR_0.001

Batch: 16 Batch: 32 Batch: 64

M
a
x
L

e
n

g
th

: 6
4

M
a

x
L

e
n
g

th
: 1

2
8

M
a

x
L

e
n

g
th

: 2
5

6

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Epoch

m
e

a
n

Pattern_9_LR_0.0001

                  



 30 

  

(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 9. Model performance: NACCVact. X-axis = epoch; Y-axis = accuracy (mean). Error 

bars = 95% CIs. 
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3.1.4 One-argument suffixal passive: NNOMVpsv & NDATVpsv 

The children in Shin (2022a) demonstrated by-age-group differences in accuracy. While the 

three-and-four-year-olds showed uniformly at-chance performance in the two conditions 

(52% in NNOMVpsv; 53% in NDATVpsv), the five-and-six-year-olds showed uniformly above-

chance performance in both conditions (71% in NNOMVpsv; 84% in NDATVpsv). This finding 

indicates that passive-voice knowledge may have been increasingly used for sentence 

comprehension as age increased. 

Figures 10 and 11 present the classification accuracy of the models per epoch in each 

condition. In NNOMVpsv, the two architectures demonstrated different patterns of accuracy. For 

LSTM, as the epoch progressed, the models with a learning rate of 0.001 showed at-chance 

performance, and the models with a learning rate of 0.0001 improved the accuracy up to 

above-chance performance. For GPT-2, all the models showed very low accuracy, regardless 

of hyperparameter type, indicating that they classified the test stimuli in this condition into 

Agent-First most of the time (which should have been Theme-First, the correct interpretation 

of this condition). In NDATVpsv, except the GPT-2 models with the learning rate of 0.0001, all 

the models demonstrated high accuracy, independently of architecture or hyperparameter 

types, as the epoch progressed. 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 10. Model performance: NNOMVpsv. X-axis = epoch; Y-axis = accuracy (mean). Error 

bars = 95% CIs. 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 11. Model performance: NDATVpsv. X-axis = epoch; Y-axis = accuracy (mean). Error 

bars = 95% CIs. 
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3.2 Case-less conditions 

3.2.1 Two-argument conditions: NCASENCASEVact & NCASENCASEVpsv 

The children in Shin (2022a) showed above-chance performance in NCASENCASEVact, with the 

five-and-six-year-olds (77%) manifesting more agent-first interpretation than the three-and-

four-year-olds (67%). In contrast, they showed numerically lower preference for the agent-

first interpretation in NCASENCASEVpsv than its active counterpart (54% for the three-and-four-

year-olds; 42% for the five-and-six-year-olds), and the difference in the response rates 

between the two conditions was substantial only for the five-and-six-year-olds. This finding 

indicates the role of passive morphology in the children’s interpretations, with age effects on 

applying passive-voice knowledge to sentence comprehension. The adult controls’ agent-first 

response rate in NCASENCASEVpsv was only 15 per cent, indicating a strong theme-first 

interpretation in this condition. 

Figures 12 and 13 present the classification performance (coded as Agent-First = 1) of 

the models per epoch in each condition. Overall, the two architectures demonstrated different 

patterns of classification as the epoch progressed. In NCASENCASEVact, whereas only some of 

the LSTM models with a learning rate of 0.001 (batch = 64, dropout = 0.5 or 0.7) achieved 

above-chance rates of Agent-First, all the LSTM models with a learning rate of 0.0001 

showed a very high rate of Agent-First. In contrast, all the GPT-2 models were at-chance or 

slightly above at-chance, regardless of hyperparameter types. The two architectures’ 

performance in this condition aligns partially with Shin and Mun (2023a). A similar kind of 

by-architecture divergence occurred in NCASENCASEVpsv. For LSTM, all the models with a 

learning rate of 0.001 showed below-chance performance, indicating that they classified the 

test stimuli in this condition into Theme-First most of the time; all the models with a learning 

rate of 0.0001 showed above-chance performance, indicating that they predominantly 

classified the test stimuli in this condition into Agent-First (which should have been Theme-
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First, the preferred interpretation of this condition). All the GPT-2 models were at-chance or 

slightly above-chance, regardless of hyperparameter types.   
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 12. Model performance: NCASENCASEVact. X-axis = epoch; Y-axis = agent-first rate 

(mean). Error bars = 95% CIs. 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 13. Model performance: NCASENCASEVpsv. X-axis = epoch; Y-axis = agent-first rate 

(mean). Error bars = 95% CIs. 
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3.2.2 One-argument conditions: NCASEVact & NCASEVpsv 

The children in Shin (2022a) performed differently by age group and condition. In NCASEVact, 

while the five-and-six-year-olds (60%) outperformed the three-and-four-year-olds (42%), the 

numeric difference in the agent-first response rates was statistically insignificant, indicating 

that the two groups did not differ considerably in this condition. In contrast, in NCASEVpsv, the 

rate of agent-first response for the three-and-four-year-olds (59%) increased when compared 

to this group’s performance in its active-voice counterpart, whereas the rate significantly 

decreased for the five-and-six-year-olds (33%) compared to this group’s performance in the 

active-voice counterpart. These findings indicate that the five-and-six-year-olds reliably 

interpreted the case-less noun in NCASEVpsv as the undergoer of an action, suppressing active-

voice knowledge in competition, when the computational burden was relaxed. The adult 

controls demonstrated a very low rate of agent-first response in this condition (10%), 

indicating their strong theme-first interpretation. 

Figures 14 and 15 present the classification performance (coded as Agent-First = 1) of 

the models per epoch in each condition. Overall, the two architectures demonstrated similar 

divergence, as shown in the two-argument case-less conditions as the epoch progressed. In 

NCASEVact, the LSTM models with a learning rate of 0.001 achieved below-chance 

performance, indicating that they classified the test stimuli in this condition as Theme-First 

most of the time, which would have been expected to occur at chance level if the models 

faithfully simulated the children’s response patterns. The models with a learning rate of 

0.0001 achieved above-chance performance, indicating that they classified the test stimuli in 

this condition as Agent-First most of the time, which again would have been expected to 

occur at chance level if the models faithfully simulated the children’s response patterns. 

These results are inconsistent with Shin (2022a) and Shin and Mun (2023a). In contrast, all 
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the GPT-2 models were at-chance or slightly below-chance, independently of hyperparameter 

types, which aligns with Shin and Mun (2023a) but not with Shin (2022a).  

In NCASEVpsv, the LSTM models with a learning rate of 0.001 achieved below-chance 

performance, indicating that they classified the test stimuli in this condition as Theme-First 

most of the time. The LSTM models with a learning rate of 0.0001 showed varying degrees 

of performance depending on the batch size and the dropout rate. In contrast, whereas all the 

GPT-2 models with a learning rate of 0.001 showed at-chance performance, all the GPT-2 

models with a learning rate of 0.0001 showed below-chance performance, indicating that they 

classified the test stimuli in this condition as Theme-First most of the time. 
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(a) LSTM, learning rate = 0.001 (b) LSTM, learning rate = 0.0001 

  

(c) GPT-2, learning rate = 0.001 (d) GPT-2, learning rate = 0.0001 

Figure 14. Model performance: NCASEVact. X-axis = epoch; Y-axis = agent-first rate (mean). 

Error bars = 95% CIs. 
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(a) Learning rate = 0.001 (b) Learning rate = 0.0001 

  

(a) Learning rate = 0.001 (b) Learning rate = 0.0001 

Figure 15. Model performance: NCASEVpsv. X-axis = epoch; Y-axis = agent-first rate (mean). 

Error bars = 95% CIs. 
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4. Discussion and Conclusion 

4.1 Summary of study 

Motivated by the proxy provided by neural networks as biologically inspired models of 

computation, we developed two neural network models (LSTM; GPT-2) with hyperparameter 

variations and measured their classification performance on the test sentences used in Shin 

(2022a) involving scrambling and omission of sentential components to varying degrees. 

Specifically, we tested if the models could recognise verbal morphology in the suffixal 

passive construction and conduct the interpretive procedures driven by that morphology (i.e., 

revision of initial interpretation on the mapping between thematic roles and case markers). 

We found that, although the performance of these models partially aligned with the children’s 

response patterns observed in Shin (2022a), the models did not faithfully replicate the 

children’s comprehension behaviour pertaining to the suffixal passive. This discrepancy 

resulted in asymmetries across models, conditions, and hyperparameters.  

 

4.2 Disparity between model performance and child comprehension behaviour 

4.2.1 Factors contributing to model performance 

The results of this study are attributable to various factors. For instance, whereas Korean 

caregiver input joins the general characteristics of child-directed speech (Shin, 2022b; cf. 

Cameron-Faulkner et al., 2003; Snow, 1972; Stoll et al., 2009), it also manifests language-

specific properties, such as scrambling and omission of sentential components (see Appendix 

for the constructional-pattern-wise variability in this respect). Along with the general features 

of caregiver input, the models may have been sensitive to the specific word order and the 

type of case markers present in a stimulus during the classification task, particularly as shown 

in the two-argument case-marked conditions manifesting non-canonical thematic-role 

ordering (NACCNNOMVact; NNOMNDATVpsv) and the case-less conditions (NCASENCASEVact; 

                  



 43 

NCASENCASEVpsv; NCASEVact; NCASEVpsv). This finding aligns with previous reports on 

language-specific challenges to the automatic processing of Korean (Kim et al., 2007; Shin, 

2022b), also partially aligning with Ambridge et al. (2020) showing the failure of modelling 

human judgements in K'iche'. 

 Regarding language-specific and construction-specific properties, the models’ ability 

to recognise passive morphology and perform the necessary revision process related to the 

suffixal passive did not clearly emerge. In the two case-less passive-voice conditions 

(NCASENCASEVpsv; NCASEVpsv)—the core conditions testing how the models cope with passive 

morphology and its related interpretive procedures for classification, not all the sub-models 

succeeded in classifying the test stimuli as Theme-First as intended (NCASENCASEVpsv: LSTM, 

learning rate = 0.001; GPT-2, learning rate = 0.0001, Batch = 16, MaxLength = 256; 

NCASEVpsv: LSTM, learning rate = 0.001; LSTM, learning rate = 0.0001, Batch = 64, Dropout 

= 0.7; GPT-2, learning rate = 0.0001). Moreover, the classification accuracy of model outputs 

in the case-marked conditions (NNOMNDATVpsv; NDATNNOMVpsv; NNOMVpsv; NDATVpsv) did not 

seem to reasonably approximate the children’s picture-selection patterns found in Shin 

(2022a), also manifesting notable by-architecture and by-hyperparameter asymmetries. The 

precise locus of these asymmetries appears nebulas, as is often the case when interpreting the 

performance of LLMs in downstream language tasks. However, the disparity between the 

models’ performance and the children’s comprehension behaviour in the suffixal passive 

conditions suggest the following interpretation: neural networks struggle to adapt to 

language-specific linguistic cues that are language specific, or at least, they process linguistic 

cues differently from the (developing) human processor does so. 

Another factor possibly contributing to the models’ performance is the simulation 

environments in this study. We trained each model with all the transitive-event instances in 

CHILDES, considering how the children in Shin (2022a) attuned their interpretation to 
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transitive events before being exposed to the stimuli. Despite this treatment, the models’ 

testing environment may not have fully conformed to what the children partially experienced 

due to the pre-trained models, mostly comprising adult language features, when constructing 

each model. Moreover, the test items in the simulations involved no overt acoustic-masking 

effects (see Table 4) as used in Shin (2022a) that informed the children of something that was 

somehow hidden (see Table 1). This absence of auditory signals related to the marker(s), 

which was inevitable due to the simulation settings in which models exclusively processed 

the textual data, may have unexpectedly affected model performance (cf. Stoyneshka et al., 

2010). Taken together, while our simulations were conducted to align with the experimental 

settings in Shin (2022a) as closely as possible, they stood on somewhat different grounds 

than the experiments, as is common in modelling research. This difference could have 

contributed to the observed asymmetry between the models and children, as the models may 

not have processed the stimuli in the same manner as the children did in the experiments. 

However, it is important to note that we cannot conclusively attribute this disparity solely to 

these factors, as these issues remain largely unexplored in the field. 

In addition to these factors, algorithmic characteristics of a computational architecture 

may be a core source of this disparity. Neural networks often utilise contextual information 

through window-based computation (Haykin, 2009; Kriesel, 2007) when processing data 

samples. A common practice involves extracting contextual information from formal 

sequences of words or characters; put differently, neural network models rely heavily on 

form. While this approach establishes a computational context (cf. Firth, 1957), it differs 

from the linguistic context encompassing semantic–pragmatic information. Therefore, when 

models access the meaning or function of a linguistic unit, they resort to the formal co-

occurrences in the input rather than drawing directly upon the unit’s meaning or function. 

Moreover, neural networks are designed to generalise existing knowledge (from pre-trained 
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models and fine-tuning) but are not designed to make reasonable predictions or extrapolations 

beyond the training space (Marcus, 1998). Deep-learning models attempt to resolve this issue 

by using massive amounts of data to cover every potential instance of formal co-occurrences; 

state-of-the-art LLMs with billions of parameters, such as GPT-n, LLaMA, and Bard, benefit 

from deploying exceedingly—and unrealistically—large training sets. They often yield good 

performance when handling known inputs but remain unsatisfactory with novel inputs (cf. 

Choi, 2023), particularly for accessing meaning or function through form (Ettinger et al., 

2023; West et al., 2023). More broadly, computational models encounter language usage 

indirectly and not in a grounded manner; that is, they do not directly engage in language-

usage profiles and situations to which language refers (Clark, 1996; McClelland et al., 2020). 

Therefore, this algorithmic nature may have caused the models’ performance to 

deviate from the children’s response patterns on some test items which could be out of range. 

The stimuli in Shin (2022a), consisting of animal names as entities, would be new instances 

for our models in this respect (and also considering the typical composition of transitive 

sentences in ordinary speech—animate agents and inanimate themes; Dowty, 1991; 

Langacker, 1991). Some of these stimuli involved scrambling or omission of sentential 

components, which are also non-typical. These factors may have led the models to 

malfunction in their operation. The key evidence supporting this argument comes from the 

models’ performance on the conditions in which a simulated learner must determine the 

thematic role of the first and sole case-less noun only with its presence (NCASEVact; 

NCASEVpsv) compared to their performance on one-argument case-marked conditions in which 

a simulated learner has more, and core, information about the first noun’s thematic role 

indicated by a specific case marker next to the noun (NNOMVact; NACCVact; NNOMVpsv; 

NDATVpsv). 
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Relatedly, the remarkable variations in the models’ performance resulting from 

hyperparameter manipulation further validate our claim regarding the crucial role of 

algorithmic characteristics in computational models for simulating human language 

behaviour. Amongst the three hyperparameters chosen for each architecture, we found that 

the learning rate exerted the greatest influence on adjusting the models’ classification 

behaviour. Given its significance in machine learning (i.e., a hyperparameter that controls the 

rate at which an algorithm updates or learns parameter values), it likely serves as a proxy for 

the manner in which humans generalise (linguistic) knowledge. Scholars have debated the 

process through which learners derive linguistic knowledge from concrete items and apply it 

to abstract representations—gradual abstraction (conservatism when transferring current 

knowledge to new items; Ambridge & Lieven, 2015; Goldberg et al., 2004; Theakston et al., 

2015) versus early abstraction (rapid generalisation of current knowledge to other relevant 

items; Fisher, 1996; Gertner et al., 2006; Lidz et al., 2003). If our approach aligns with this 

concept, the simulations in this study could provide new insights complementing and 

advancing the literature on how children generalise linguistic knowledge as a function of 

exposure to linguistic environments and domain-general learning capacities. Nevertheless, we 

concede that our assertion is based on exploratory observations and is, therefore, speculative. 

Further examination is warranted. 

 

4.2.2. Factors contributing to child comprehension behaviour 

Despite the same pursuit of efficiency in information processing, how a computational model 

handles language input differs from how the human processor copes with linguistic 

knowledge. Decades of research have shown that the processor operates to reduce the burden 

of work currently being executed by immediately mapping form onto function (and vice 

versa) under simultaneous activation of multiple (non-)linguistic routes, combined with 
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cognitive-psychological factors (Christianson, 2016; Karimi & Ferreira, 2016; Levy, 2008; 

McElree, 2000; O’Grady, 2015; Traxler, 2014). In particular, the child processor manifests 

notable characteristics in its operation due to its developing nature (cf. Omaki & Lidz, 2015), 

favouring reliable or available cues with a one-to-one mapping relation between form and 

function (Bates & MacWhinney, 1989; Cameron-Faulkner et al., 2003; Shin, 2021, 2022a; 

Shin & Mun, 2023b). Given the broad impact of general language-usage experience 

(Ambridge et al., 2015; Tomasello, 2003), the processor is sensitive to particular linguistic 

environments in which a target item at hand is situated (Dąbrowska, 2008; Dittmar et al., 

2014; Goldberg et al., 2004). The degree to which the current stimulus is informative against 

the prior language-usage experience also modulates its performance (Dittmar et al., 2008; 

Shin & Deen, 2023; Stromswold et al., 1985). Furthermore, the contribution of domain-

general factors to the processor’s operation is sometimes limited or less efficient (Adams & 

Gathercole, 2000; Diamond, 1985). These aspects collectively modulate how the developing 

processor adjusts to accomplish sentence comprehension (Choi & Trueswell, 2010; Garcia et 

al., 2021; Özge et al., 2019; Snedeker & Trueswell, 2004; Suzuki & Kobayashi, 2017). 

Reflecting this aspect, the children in Shin (2022a) seemed to make optimal, albeit 

imperfect or partial, use of the information available at the time, given their learning 

trajectories. When the children listened to an aural stimulus and were asked to choose one 

picture that corresponded to the stimulus, they must compute the relative agenthood or 

themehood between the two arguments with no animacy cue available. Specifically, in the 

case of the suffixal passive, they must discern verbal morphology indicating the voice and 

recalibrate the initial, garden-pathed alignments between thematic roles and case markers to 

formulate a correct interpretation. For this task, the child processor was likely to draw upon 

multiple morpho-syntactic and semantic cues, including distributional (e.g., mapping between 

an event representation and a syntactic representation manifested in word order) and local 
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(e.g., mapping between thematic roles and case markers) ones, which are searchable from 

their language-usage profiles and are sensitive to usage frequencies. Moreover, their 

interpretation was likely to be influenced by multiple sources, including event or world 

knowledge (Friedman, 2000; Snedeker & Trueswell, 2004), memory operation (Kim et al., 

2017), task type (Huang et al., 2013), and cognitive bias (e.g., Agent-First strategy; Ambridge 

et al., 2017; Shin, 2021). This interplay of various (non-)linguistic factors affecting the 

operation of the child processor may not have been properly captured and modelled by the 

neural network learners developed in this study. 

 

4.3 Concluding remarks 

The present study explored whether and how computational models represent children’s 

language comprehension, focusing on two commonly used neural network architectures in 

language science, by examining their ability to cope with the Korean suffixal passive 

construction. Cross-linguistically, acquiring the passive construction is often delayed. In the 

case of the Korean suffixal passive, given that children have difficulty revising the initial 

parsing, the interpretive procedures required by passive morphology make acquiring the 

passive more difficult. Our study revealed that, while computational architectures tested in 

this study may be able to utilise information about formal co-occurrences to access the 

intended message to a certain degree, (the outcome of) this process may substantially differ 

from how a child, as a developing processor, engages in comprehension. This explanation 

resonates with previous studies showing a notable mismatch between computational models’ 

performance and human-generated data (Chang & Bergen, 2024; Dasgupta et al., 2022; 

McCoy et al., 2023). We believe that, through its deployment of neural network models with 

hyperparameter variations and language typologically different from the major languages 

currently under investigation, our study provides evidence of the limits of the neural 
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networks’ capacity to address child language features. The implications of this study invite 

subsequent inquiries on the extent to which computational models reveal developmental 

trajectories of child language that have been unveiled through corpus-based or experimental 

research. In line with this, comparing model performance across various neural network 

architectures, manipulating the presence of the patching procedure (i.e., pre-trained-model-

only classifiers vs. patched-model classifiers) may provide additional insights into how 

computational models address child language features. 

While this study does not stand on the core assumptions of nativism, such as the 

poverty of stimulus and innate principles of grammar, our simulations only partially engage 

with usage-based constructionist approaches that argue for the joint contributions of usage 

frequency and domain-general learning capacities to shaping learning outcomes, as evidenced 

in the previous simulation-based studies (Alishahi & Stevenson, 2008; Bannard et al., 2009; 

Perfors et al., 2011). The current study is limited in computational resources and scope 

including constructional types, test stimuli, and age range. We thus believe that its 

implications offer a promising avenue for future studies on this research paradigm in child 

language development at the intersection of computational methods and techniques. 
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Notes 

1. Abbreviations: ACC = accusative case marker; DAT = dative marker; NOM = nominative 

case marker; PSV = passive suffix; PST = past tense marker; SE = sentence ender; 

Strikethrough in grey = obscured; V = verb. 

2. Another type of challenge involving passive morphology is that it is morphologically 

irregular, is unproductive (as they apply only to a limited set of verbs), and overlaps with 

causative morphology (Sohn, 1999; Yeon, 2015). They were not considered actively in 

the current study. We hope future research fully reflecting these aspects would replicate 

the findings of this study. 

3. An eojeol refers to a unit with whitespace on both sides that serves as the minimal unit of 

sentential components. This roughly corresponds to a word in English. 

4. See this repository for the code and dataset. 

5. One possibility raised was that the caregiver input data may have overridden the adult-

language / L1 information during the pre-training stage, akin to catastrophic forgetting 

observed after fine-tuning a general-purpose model with specific datasets (Kirkpatrick et 

al., 2017). We acknowledge that our study does not speak to whether this phenomenon 

occurred in our modelling process, and further research is needed to explore this. 
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